Molecular morphology of pituitary cells, from conventional immunohistochemistry to fluorescein imaging.
نویسندگان
چکیده
In situ hybridization (ISH) at the electron microscopic (EM) level is essential for elucidating the intracellular distribution and role of mRNA in protein synthesis. EM-ISH is considered to be an important tool for clarifying the intracellular localization of mRNA and the exact site of pituitary hormone synthesis on the rough endoplasmic reticulum. A combined ISH and immunohistochemistry (IHC) under EM (EM-ISH&IHC) approach has sufficient ultrastructural resolution, and provides two-dimensional images of the subcellular localization of pituitary hormone and its mRNA in a pituitary cell. The advantages of semiconductor nanocrystals (quantum dots, Qdots) and confocal laser scanning microscopy (CLSM) enable us to obtain three-dimensional images of the subcellular localization of pituitary hormone and its mRNA. Both EM-ISH&IHC and ISH & IHC using Qdots and CLSM are useful for understanding the relationships between protein and mRNA simultaneously in two or three dimensions. CLSM observation of rab3B and SNARE proteins such as SNAP-25 and syntaxin has revealed that both rab3B and SNARE system proteins play important roles and work together as the exocytotic machinery in anterior pituitary cells. Another important issue is the intracellular transport and secretion of pituitary hormone. We have developed an experimental pituitary cell line, GH3 cell, which has growth hormone (GH) linked to enhanced yellow fluorescein protein (EYFP). This stable GH3 cell secretes GH linked to EYFP upon stimulation by Ca²+ influx or Ca²+ release from storage. This GH3 cell line is useful for the real-time visualization of the intracellular transport and secretion of GH. These three methods from conventional immunohistochemistry and fluorescein imaging allow us to consecutively visualize the process of transcription, translation, transport and secretion of anterior pituitary hormone.
منابع مشابه
Molecular Morphology of Pituitary Cells, from Conventional Immunohistochemistry to Fluorescence Imaging
In situ hybridization (ISH) at the electron microscopic (EM) level is essential for elucidating the intracellular distribution and role of mRNA in protein synthesis. EM-ISH is considered to be an important tool for clarifying the intracellular localization of mRNA and the exact site of pituitary hormone synthesis on the rough endoplasmic reticulum. A combined ISH and immunohistochemistry (IHC) ...
متن کاملBlastic Plasmacytoid Dendritic Cell Neoplasm; A Report of Three Cases
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematodermic myeloid malignancy that is known to be derived from plasmacytoid dendritic cells which are characterized by expression of CD4, CD56, and more specific markers such as CD123. Here, the authors present three cases of BPDCN diagnosed in the past two years and address different available diagnostic modalities such as morpho...
متن کاملA New Theranostic System Based on Gd2O3 NPs coated Polycyclodextrin Functionalized Glucose for Molecular Magnetic Resonance Imaging (MMRI).
Introduction: Recent advances in nanoscience and biomedicine have attracted tremendous attention over the past decade to design and construct multifunctional nanoparticles that combine targeting, therapeutic, and diagnostic functions with a single platform to overcome the problems of conventional techniques for diagnosis and therapy with minimal toxicity. Materials ...
متن کاملAGS cell line xenograft tumor as a suitable gastric adenocarcinoma model: growth kinetic characterization and immunohistochemistry analysis
Objective(s): Gastric cancer is the third leading cause of cancer-related death worldwide. The overall survival rate of patients is poor because gastric cancers are usually diagnosed at the late stages. Therefore, further research is needed and appropriate research tools are required to develop novel therapeutic approaches.Materials and Methods: Eight female athymic nude mice with a C57BL/6 bac...
متن کاملPeripheral Blood-Derived Mesenchymal Stem Cells: Growth Factor-Free Isolation, Molecular Characterization and Differentiation
Background and Objectives: The mesenchymal stem cells derived from peripheral blood (PB) have been recognized as a promising source for allogeneic cell therapy. The aim of this study was to investigate the isolation, growth and differentiation ability of peripheral blood-isolated mesenchymal stem cells. Methods: The mononuclear cells were purified from fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2011